Probabilistic video stabilization using Kalman filtering and mosaicking
نویسندگان
چکیده
The removal of unwanted, parasitic vibrations in a video sequence induced by camera motion is an essential part of video acquisition in industrial, military and consumer applications. In this paper, we present a new image processing method to remove such vibrations and reconstruct a video sequence void of sudden camera movements. Our approach to separating unwanted vibrations from intentional camera motion is based on a probabilistic estimation framework. We treat estimated parameters of interframe camera motion as noisy observations of the intentional camera motion parameters. We construct a physics-based state-space model of these interframe motion parameters and use recursive Kalman filtering to perform stabilized camera position estimation. A six-parameter affine model is used to describe the interframe transformation, allowing quite accurate description of typical scene changes due to camera motion. The model parameters are estimated using a p-norm-based multi-resolution approach. This approach is robust to model mismatch and to object motion within the scene (which are treated as outliers). We use mosaicking in order to reconstruct undefined areas that result from motion compensation applied to each video frame. Registration between distant frames is performed efficiently by cascading interframe affine transformation parameters. We compare our method's performance with that of a commercial product on real-life video sequences, and show a significant improvement in stabilization quality for our method.
منابع مشابه
On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملDigital Video Stabilization System by Adaptive Fuzzy Kalman Filtering
Digital video stabilization (DVS) allows acquiring video sequences without disturbing jerkiness, removing unwanted camera movements. A good DVS should remove the unwanted camera movements while maintains the intentional camera movements. In this article, we propose a novel DVS algorithm that compensates the camera jitters applying an adaptive fuzzy filter on the global motion of video frames. T...
متن کاملOn Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملReal-Time Digital Image Stabilization Using Kalman Filters
T his paper presents a novel, real-time stabilization system that uses Kalman filters to remove short-term image fluctuations with retained smooth gross movements. The global camera motion is defined in terms of constant acceleration motion and constant velocity motion models, and Kalman filtering is employed to facilitate smooth operation. It is shown that the process noise variance has a dire...
متن کاملA Sensor Fusion Based Object Tracker for Compressed Video
Object tracking is very important for automatic indexing of video content. This work shows tracking of objects directly using compressed MPEG video data. Two sensors, one using motion vectors and the other using DCT coefficients obtained from compressed video stream, provide measurements for the location of the object being tracked. The optimal estimate from the two measurements is found using ...
متن کامل